事業者名	滋賀県									
学术行行	/AX 具 不 									
機器名	低加速走査型電子顕微鏡									
写真										
特徴・用途	観察・分析が困難な有機材料や炭素系材料で作られた試作品、製品の超微小構造解析や分析に利用できる。									
設置場所	滋賀県東北部工業技術センター 長浜庁舎									
	年月	稼働日数	依頼試験・ 依頼分析 (件)	技術指導 (件)	試験設備件数(件)	貸出・利用時間(時間)	受託研究· 共同研究 (件)	その他 (件)	利用件数計(件)	
	H 26年1月	7	0	4	1	2	5	6	16	
	H 26年2月	14	0	8	3	6	8	4	23	
	H 26年3月	16	0	13	5	14	6	2	26	
	H 26年4月	20	0	18	4	8	5	3	30	
	H 26年5月	12	0	7	2	10	4	2	15	
利用状況	H 26年6月	11	0	6	3	4	6	0	15	
	H 26年7月	12	0	8	2	7	7	0	17	
	H 26年8月	10	0	6	2	6	7	1	16	
	H 26年9月	11	0	3	3	4	5	1	12	
	H 26年10月	13	0	10	2	2	5	2	19	
	H 26年11月	15	0	12	3	6	3	3	21	
	H 26年12月	13	0	7	3	7	5	0	15	
利用者等の声	・低加速条件で高倍率の観察が容易で、さらに粒子の界面が鮮明に観察できるため、数ミクロンの粒子径の計測ができた。 ・従来は観察することができなかった有機物や半導体の表面の加工状態をコーティング処理なしにサブミクロンレベルで比較できたことで、従来は光反射や濡れ性といった間接的な評価しかできなかった表面状態の評価が可能になった。 ・高倍率での観察には、条件検討や軸調整・焦点・非点などの操作に習熟と時間が必要であったが、導入機器では自動調整による操作性が大幅に向上したことで短時間での評価・分析が可能となった。									
研究開発事例 等	 無機微細粉末が樹脂中で分散する様子をサブミクロンレベルで詳細に評価することにより、製造工程の改良を行うことができた。 活性炭を利用した電池材料開発において、複合材料の接点部の微細な評価が可能となり、研究開発を加速することが出来た。 現在、当研究は、実用化に向けた研究へと展開中であり、多くの企業から連携、技術導入の要望がある。 									
補助事業概要 の広報資料	http://ri	ngring-keir	in.jp/shinse	ei/documen	t/list/kikai	/h25/pdf/2	<u>5-031koho.</u>	<u>pdf</u>		

	1										
事業者名	滋賀県										
機器名	放射イミュニティ試験システム										
写真											
特徴・用途	機械・電気製品の電磁波に対する耐性を評価する。										
設置場所	滋賀県工業技術総合センター										
利用状況	年月	稼働日数	依頼試験・ 依頼分析 (件)	技術指導 (件)	試験設備件数(件)	貸出・利用時間(時間)	受託研究· 共同研究 (件)	その他 (件)	利用件数計(件)		
	H 26年1月	9	0	12	9	50	0	0	21		
	H 26年2月	8	0	11	8	22	0	1	20		
	H 26年3月	8	0	13	8	39	0	12	33		
	H 26年4月	3	0	5	3	11	0	3	11		
	H 26年5月	7	0	6	7	23	0	0	13		
	H 26年6月	5	0	4	5	18	0	0	9		
	H 26年7月	8	0	6	8	32	0	0	14		
	H 26年8月	3	0	2	3	11	0	0	5		
	H 26年9月	5	0	4	5	13	0	0	9		
	H 26年10月	4	0	3	4	13	0	0	7		
	H 26年11月	4	0	3	4	20	0	0	7		
	H 26年12月	5	0	3	5	20	0	0	8		
利用者等の声	・これまでできなかった高いスペックの試験が会社の近くでできるようになって助かっている。 ・操作手順が簡単で、評価が容易に行える。 ・実績が多く、信頼の高いメーカーの装置なので対外的にも安心して評価結果を説明することができる。										
研究開発事例 等	・研究開発中の製品について本試験を行い、誤動作の検証を行っている。 ・誤動作が発生すれば製品に対策を施し、誤動作が起こらなくなるまで試験を続けることで、安全で信頼性の高い製品づくりが可能となった。 ・ヨーロッパ等の海外へ輸出する際には本試験が義務付けられているため、海外向けの製品については、試験により品質保証を行っている。										
補助事業概要 の広報資料	http://ringring-keirin.jp/shinsei/document/list/kikai/h25/pdf/25-031koho.pdf										